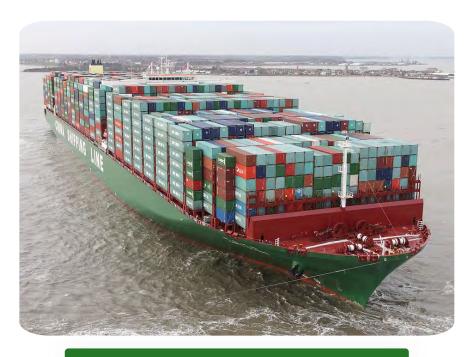

Pharmbi@med

Основные бактериальные и вирусные болезни сезона 2022-2023 и борьба с ними


Агроном-консультант ГК «Фармбиомед» Батыгин Александр

ТЕКУЩАЯ СИТУАЦИЯ: «БАЛАНС СИЛ»

Около 73% патогенов, вызывающих новые болезни растений во всем мире, являются бактерии и вирусы. Отдельные патогены, такие как ВОМ или ВТМ, могут инфицировать более 1000 видов растений из более, чем 85 семейств.

ТЕКУЩАЯ СИТУАЦИЯ: БАЛАНС СИЛ

Сухогруз CSCL Globe Длина судна 400 м

Причины

- Естественная смена патогенов в ходе природных процессов
- Распространение вредных организмов на новые территории в связи с увеличением товарооборота и миграцией населения
- Климатические изменения, благоприятные для развития и перезимовки патогенов и переносчиков
- Ввоз инфицированного посадочного и посевного материала
- Расширение круга хозяев среди культурных растений
- Доминирующее использование в агробиоценозах фунгицидов
- о Увеличение площадей под монокультурами
- Трудности диагностики бактериальных и вирусных болезней растений

Основные патогены, выявленые в 2022-2023 году **на томате 3Г**:

бактерии

Agrobacterium tumefaciens, Agr. Rhizogenes — бешеный корень Pseudomonas syringae pv. — бактериальная крапчатость Pseudomonas corrugata — сердцевинный некроз стеблей Pseudomonas sp.

Pectobacterium (Erwinia) carotovorum — черная ножка Clavibacter michiganensis sbsp. Michiganensis — бактериальный рак Xanthomonas campestris pv. Vesicatoria — черная бактериальная пятнистость Ralstonia solanacearum — бактериальное увядание **КАРАНТИЙНЫЙ ОБЪЕКТ!**

вирусы

ТМV — вирус мозаики табака
ТоМV — вирус мозаики томата
СМV — обыкновенной мозаики огурца
ArMV — вирус мозаики резухи
TSWV — вирус бронзовости томата
BRV — вирус чёрной кольчатости томата
TMGMV — вирус зелёной слабой мозаики табака
EMDV — вирус карликовой мозаики баклажана

грибы

Fusarium oxysporum
Fusarium solani
Pythium debaryanum
Botrytis cinerea
Acremonium kiliense
Ascochyta cucumis
Verticillium albo-atrum
Verticillium album
Geotrihum candidum
Rhizoctonia solani
Didymella lycopersici
Phialophora sp.

Основные патогены, выявленые в 2022-2023 году **на огурце 3Г** :

бактерии

Agrobacterium tumefaciens, Agr. Rhizogenes — бешеный корень Pseudomonas syringae pv. Lachrymans — угловая пятнистость листьев Pseudomonas sp.

Pectobacterium (Erwinia) carotovorum – чёрная ножка

грибы

Fusarium oxysporum
Fusarium sporotrichiella
Pythium debaryanum
Botrytis cinerea
Acremonium kiliense
Ascochyta cucumis
Verticillium albo-atrum
Rhizoctonia aderholdii
Geotrihum sp.

вирусы

ТМV — вирус мозаики табака
CMV — обыкновенной мозаики огурца
ArMV — вирус мозаики резухи
CGMMV — вирус зелёной крапчатой
мозаики огурца
SqMV — вирус мозаики тыквы
ZYMV — вирус желтой мозаики цукини
TBRV — вирус чёрной кольчатости
томата

В 32 (25%) смывах с конструкций и поверхностей теплиц выявлены:

Бактерии	Грибы	Вирусы
Pectobacterium	Fusarium oxysporum	CGMMV – вирус зелёной
carotovorum	Fusarium solani	крапчатой мозаики огурца
Agrobacterium sp.	Pythium debaryanum	CMV - вирус мозаики огурца
Pseudomonas sp.	Alternaria alternata	TMV – вирус мозаики табака
Pantoea agglomerans	Ascochyta sp	ТоМV — вирус мозаики томата
Chryseobacterium sp.	Acremonium kiliense	PepMV - вирус моз-ки пепино

95 (75%) образцов смывов - чистые

В субстратах выявлены:

ТОРФ

ГРИБЫ

Pythium debaryanum Fusarium oxysporum Rhizoctonia solani Acremonium kiliense

БАКТЕРИИ

Agrobacterium tumefaciens

Pectobacterium carotovorum

В поливной воде выявлены:

Бактерии	Грибы	Вирусы
Pectobacterium carotovorum	Fusarium oxysporum F. sporotrichioides	CGMMV — вирус зелёной крапчатой мозаики огурца
Pseudomonas syringae	Pythium debaryanum	СМV- вирус мозаики огурца
Pseudomonas putida	Alternaria alternata	ToMV – вирус мозаики томата
Ps. aeruginosa	Ascochyta sp	TMV – вирус мозаики табака
Agrobacterium sp.	Acremonium kiliense	PepMV - вирус моз-ки пепино
Pantoea agglomerans	Rhizoctonia solani	
Chryseobacterium sp.	Verticillium album	

69 (52%) образцов воды - *чистые*

В том числе:

Вода из реки

Agrobacterium tumifaciens, Pectobacterium carotovorum

Вода из дренажа		
Бактерии	Грибы	Вирусы
Pectobacterium carotovorum	Fusarium oxysporum	CGMMV
Pseudomonas syringae	Pythium debaryanum	TMV
Agrobacterium tumifaciens	Acremonium kiliense	PepMV
И ПР.	И ПР.	И ПР.

Вода после водоподготовки 25% образцов содержат те или иные патогены	
Agrobacterium tumifaciens	CGMMV, TMV, ToMV,
	PepMV

В семенах выявлены:

Бактерии	Грибы	Вирусы
Agrobacterium	Fusarium	CGMMV,
tumefaciens	oxysporum	CMV, TMV,
		ToMV
		PepMV

Общие меры снижения вредоносности болезней растений в тепличном комплексе

Факторы, влияющие на развитие бактериальных болезней растений

Температура воздуха и субстрата	Слишком высокая температура препятствует нормальному росту и развитию, провоцируя тепловой стресс растений, ограничивая образование завязей, а также водный стресс. Водный стресс часто приводит к росту мягких плодов, уязвимых для таких болезней как мягкая водянистая гниль. Внезапные перепады температуры способствуют развитию бактериозов, вызывая конденсацию воды на листьях. Высокая температура субстрата или, например, перепад более 3°С между температурой кубика и субстрата/снижение ниже 16°С, могут привести к развитию корневых гнилей
Относительная влажность воздуха (ОВВ)	Слишком высокая влажность, особенно при прохладных температурах, будет способствовать образованию конденсата на листьях. Кроме того, чрезмерная влажность затрудняет транспирацию, что приводит к снижению транспорта питательных веществ.
Температура раствора	Высокая температура раствора приводит к кислородному голоданию и последующему отмиранию корней, что стимулирует развитие возбудителей корневых гнилей. Нежелательна разница больше 4°С между температурой воздуха и температурой раствора
Вентиляция	Высокая влажность при пониженной температуре воздуха могут спровоцировать стекловидность листьев (обусловлено избыточным поглощением воды корнями и недостаточной транспирацией). Такие листья более уязвимы для патогенов и вредителей.

Факторы, влияющие на развитие бактериальных болезней растений

	· · · · · · · · · · · · · · · · · · ·
Питание	Излишнее питание, например, азотом приводит к укрупнению клеток, истончению их стенок, растения становятся более рыхлыми, подверженными воздействию вредителей и болезней. Повышенный аммонийный азот может привести к отравлению растения, повреждению корневых волосков (сами корни грубые и слабо ветвятся), морщинистости листьев и разрушению их сосудистой ткани.
Поливы	Избыток воды создает анаэробные условия, что приводит к гибели корней. Избыток воды после образования завязей может приводить к растрескиванию плодов, что резко повышает вероятность заражения патогенами. Недостаток воды и низкий уровень её поглощения способствуют развитию вершинной гнили.
Освещение	Слабая освещенность и высокая ОВВ способствуют явлению гуттации – процесс выведения излишней воды через гидатоды. На фоне высоких температур и влажности приводит к снижению поглощения СО ₂ , высокой скорости дыхания и преждевременному старению листьев.

ВНИМАНИЕ! ОПАСНЫЙ СИМПТОМ: «ВСЁ ХОРОШО!»

В некоторых случаях болезнь протекает бессимптомно (или почти бессимптомно) до момента возникновения благоприятных условий для патогена, тем не менее, нанося значительный урон урожаю.

Основные бактериальные патогены и температурные условия для их развития: **TOMAT 3**Г

БАКТЕРИАЛЬНЫЙ РАК Clavibacter michiganensis subsp. michiganensis	24 ⁰ -32 ⁰ C
НЕКРОЗ СЕРДЦЕВИНЫ СТЕБЛЯ Pseudomonas corrugata, Ps. marginalis	25 ⁰ -28 ⁰ C
ЧЁРНАЯ БАКТЕРИАЛЬНАЯ ПЯТНИСТОСТЬ Xanthomonas campestris pv. vesicatoria	24 ⁰ -30 ⁰ C
БАКТЕРИАЛЬНАЯ КРАПЧАТОСТЬ Pseudomonas syringae pv. tomato	18 ⁰ -24 ⁰ C
БАКТЕРИАЛЬНОЕ УВЯДАНИЕ Ralstonia solanacearum (карантинный объект)	29 ⁰ -35 ⁰ C
БАКТЕРИАЛЬНЫЕ ГНИЛИ: мокрая гниль плодов, прикорневая гниль стебля, мягкая гниль листьев, корневая гниль — Pectobacterium carotovorum subsp. carotovorum, род Pseudomonas, Bacillus, Pectobacterium, Chryseobacterium и пр.	24 ⁰ -30 ⁰ C

БАКТЕРИАЛЬНЫЙ РАК ТОМАТА

Clavibacter michiganensis subsp. michiganensis

Бактериальный рак на томате Эндевер F1 Фото: ИЛ «АгросервисДиагностика»

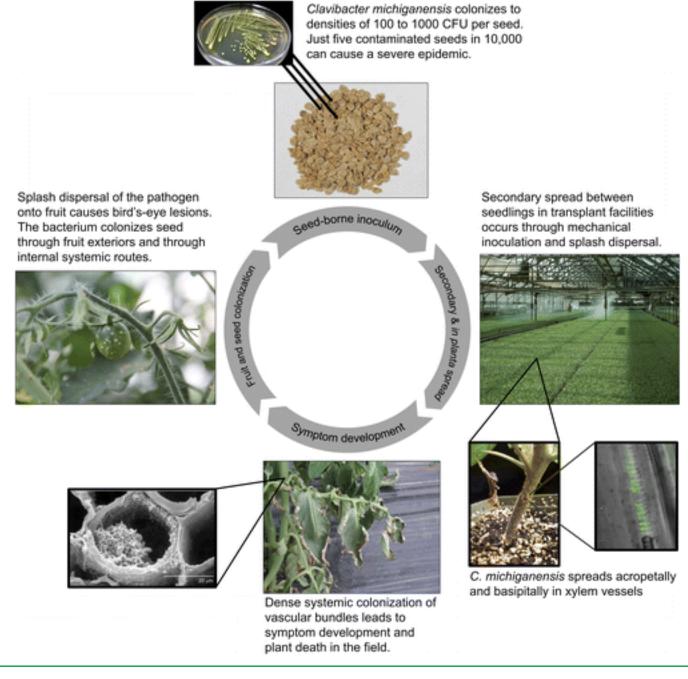
Источники инфекции:

семена (разово, в единичных партиях)! растительные остатки культурные растения (перец, баклажан, картофель) сорные растения

Тип заражения:

системное (патоген попадает напрямую в ксилему) локальное/местное (ткани листьев, стебля, плодов)

Как распространяется:


при уходовых работах при опрыскиваниях при соприкосновении листьев (гуттация) при поливах

Жизнеспособность:

Семена – до 8 месяцев (на поверхности)
Растительные остатки – до 2-х лет
Поверхности (в отсутствии растения-хозяина) – до 4-х недель

БАКТЕРИАЛЬНЫЙ РАК ТОМАТА:

Цикл развития

БАКТЕРИАЛЬНЫЙ РАК ТОМАТА: Проблема диагностики

Семена: только молекулярные методы инструментальной диагностики (ПЦР, ИФА)

Рассада: бессимптомное течение болезни, длительный латентный период при семенной инфекции (3-6 недель)

Взрослые растения: некоторые симптомы схожи с симптомами заражения растений возбудителями некроза сердцевины стебля, фузариозного увядания или нарушениями питания

Продольные срезы стеблей:

- А бактериальный рак
- Б фузариозное увядание

БАКТЕРИАЛЬНЫЙ РАК ТОМАТА: Рассада

«Окно уязвимости»: 3-4 листа — 17-18 листьев

Когда: Пикировка в кубик

Что: Увядание сеянцев

(корни – чистые, без загнивания)

Задержка роста

Когда: Постановка на маты

Что: Краевой некроз листьев

Желтовато-коричневые до темных

некротические пятна на листьях и стеблях

Одностороннее увядание листьев

Расщепление стебля

Пустулы на листьях и стеблях

(похожи на оэдему)

В случае семенной инфекции первые симптомы могут проявляться через 3-6 недель

Начальная стадия

Заражение через гидатоды

Находится преимущественно в ксилеме

Рак томата Clavibacter michiganensis subsp. michiganensis

Пустостебельность томата
Pseudomonas corrugata

НЕКРОЗ СЕРДЦЕВИНЫ СТЕБЛЯ

Pseudomonas corrugata

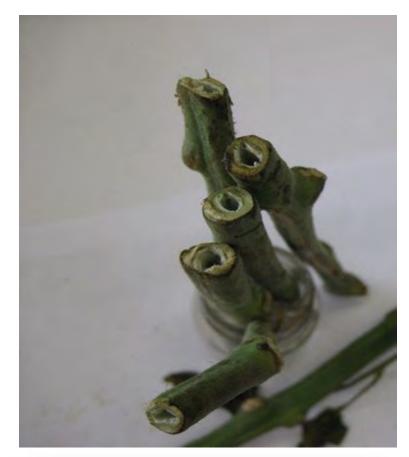


Фото: ИЛ «АгросервисДиагностика»

Источники инфекции:

семена растительные остатки

Как распространяется:

при уходовых работах при опрыскиваниях при поливах

Жизнеспособность:

Растительные остатки – до 18 месяцев

Отличие от бактериального рака:

наличие большого количества воздушных корней разрушаются только ткани сердцевины осыпание плодов

НЕКРОЗ СЕРДЦЕВИНЫ СТЕБЛЯ

НЕКРОЗ СЕРДЦЕВИНЫ СТЕБЛЯ: ПРОЯВЛЕНИЕ НА ПЛОДАХ

Бактериальные болезни огурца

Бактериальное увядание Erwinia tracheiphila

Поражение сосудов огурца при бактериозе

Бактериальные болезни огурца

И «бешеные корни» Agrobacterium tumefaciens

Угловатая пятнистость листьев огурца Pseudomonas syringae pv. lachrymans.

Agrobacterium tumefaciens, Agr. rhizogenes «crazy roots» («бешеные корни»)

Симптомы заболевания проявляются после переноса в растительную клетку фрагмента Т-ДНК из плазмиды Ri, который отвечают за синтез ауксина и цитокининов в растительной ткани, из-за чего происходит разрастание корней, а также синтез опина, который усваивается только бактериальными клетками Agrobacterium, находящимися внутри и вне растения.

Симптомы поражения огурца Agrobacterium spp. «crazy roots» («бешеные корни»)

На поверхности кубика появляются кончики корней, образуя «щётку»

Симптомы поражения огурца Agrobacterium spp. «crazy roots» («бешеные корни»)

Чрезмерно развитая корневая система приводит к разбуханию и уплотнению мата

Симптомы поражения огурца Agrobacterium spp.

«crazy roots» («бешеные корни»)

В прикорневой и корневой частях растения появляются корончатые галлы

Симптомы поражения огурца Agrobacterium spp. «crazy roots» («бешеные корни»)

На срезе стебля видно побурение сосудов

Симптомы поражения огурца Agrobacterium spp. «crazy roots» («бешеные корни»)

Ослабление растений, увядание. Возможно морфологическое изменение плодов

ФУЗАРИОЗНО-ПИТИОЗНАЯ КОРНЕВАЯ ГНИЛЬ НА ПОРАЖЁННОМ АГРОБАКТЕРИЯМИ РАСТЕНИИ

Дезинфекция теплиц

РАССАДА

Расход рабочей жидкости 50 мл/растение

- Семядоли 1-й настоящий лист биопрепарат на живых бактериях
- 3-4 наст. лист Фитолавин (0,15% раб. р-ром)

На постоянном месте

- Перед высадкой биопрепарат, содержащие триходерму
- Через 2-3 дня внесение Превикура Энерджи 2-3 л/га
- Через 8-12 дней Фитолавин, BPK или Стрекар, КС полив под корень 6 л/га
- Через 3-5 дней биопрепарат, содержащий живые микроорганизмы
- Через 7-10 дней Фармайод, ГР полив под корень 0,03% p-ром
- Через 3-5 дней биопрепарат, содержащий живые микроорганизмы
- Через 7-10 дней Фитоплазмин, ВРК полив под корень 6 л/га
- Через 3-5 дней биопрепарат, содержащий живые микроорганизмы
- Через 7-10 дней Фитолавин, ВРК или Стрекар, КС полив под корень 6 л/га
- Далее, при необходимости, продолжать чередование препаратов
- Обязательно еженедельно вносить перекись водорода 4-10 л\га или Хандрокею, стимулировать корневую систему Цирконом, Этамоном

Схема бактериальные, грибные заболевания

Дезинфекция матов с растительными остатками предыдущего оборота:

• Полив 1%-ным раствором Фармайода, ГР или 3-5%-ным раствором перекиси водорода, расход по 1 л на мат (4 растения).

В период выращивания рассады:

- Внесение в субстрат на стадии первого настоящего листа препаратов: Алирин-Б, СП, норма расхода 60 г на 1 га рассады, или Микозар, СП, норма расхода 100 г на 1 га рассады.
- Внесение в субстрат 0,15%-ного раствора Фитолавина в фазе 3-4 настоящих листьев.

В период выращивания на постоянном месте:

- После высадки пролив 0,15% раствором Превикура энерджи, норма расхода 2-4 л/га (100 мл/растение).
- Через 10-14 дней после высадки рассады полив 0,2%-ным раствором Фитолавина, ВРК.
- Через 6 дней после этого пролив Микозаром, СП, норма расхода 200 г/га+Нарцисс 0,25% раствор из расчета 0,1-0,15л под растение.
- Через 10 дней полив 0,2-03%-ным раствором Фитоплазмина, ВРК
- Через 6 дней после этого пролив Алирин-Б,СПмод 120г/га
- Через 7 дней полив 0,2% раствором Стрекара, расход 150 мл раствора на растение.
- Через 7 дней полив 0,06% раствором Фармайода, ГР, расход 0,1 л/растение.

Меры борьбы с бактериозами

- 1. Использование устойчивых сортов.
- 2. Использование здоровых семян и предотвращение заражения рассады.
- Диагностика чистоты семян (иммунологический, ПЦР анализ)
- Обеззараживание теплицы и рабочих инструментов (80% перезаражения от первичного очага заболевания).
- Чистота поливной и дренажной систем
- Анализ чистоты рассады
- Снижение травмирования растений

3. Химическая защита

- Применение бактерицидов
- Применение фунгицидов в смеси с препаратами меди или Йода (Фармайод, ГР)
- Борьба с переносчиками (насекомыми, клещами, нематодами)

4. Биологическая защита

- препараты, повышающие иммунитет и усиливающие рост растений
- Штаммы антагонисты
- **5.** Внутренний **КАРАНТИН**, гаратнированные поставшики, систематическое обследование, анализ видов патогенов и их восприимчивости к пестицидам

Д.В. ФИТОБАКТЕРИОМИЦИН

Комплекс биологически активных веществ, синтезируемых почвообитающим **стрептомицетом Streptomyces griseus.**

Механизм действия – системный.

Обеспечивает защиту растений от бактериальных болезней в течение всего периода вегетации, начиная с семян и до окончания плодоношения.

Не совместим с препаратами, содержащими живые бактерии!

СРОК ГОДНОСТИ 1 год

ПРЕИМУЩЕСТВА

- ВЫРАЖЕННОЕ БАКТЕРИЦИДНОЕ ДЕЙСТВИЕ
- ✓ ОБЛАДАЕТ ФУНГИСТАТИЧЕСКИМ ДЕЙСТВИЕМ
- ✓ ПРЕПАРАТ СИСТЕМНОГО ДЕЙСТВИЯ, ЛЕГКО ПРОНИКАЕТ В РАСТЕНИЯ
- ✓ НЕ НАКАПЛИВАЕТСЯ В КОНЕЧНОЙ ПРОДУКЦИИ
- ✓ НЕ ФИТОТОКСИЧЕН ДЛЯ РАСТЕНИЙ
- ✓ ОКАЗЫВАЕТ СТИМУЛИРУЮЩЕЕ ДЕЙСТВИЕ НА РОСТ И РАЗВИТИЕ РАСТЕНИЙ
- ✓ НЕ ТОКСИЧЕН ДЛЯ ЭНТОМОФАГОВ И НАСЕКОМЫХ ОПЫЛИТЕЛЕЙ
- ✓ КОРОТКИЙ СРОК ОЖИДАНИЯ 2 ДНЯ
- ✓ ВОЗМОЖНОСТЬ ПРИМЕНЕНИЯ В ЛЮБУЮ ФАЗУ РАЗВИТИЯ РАСТЕНИЯ, ВКЛЮЧАЯ ЦВЕТЕНИЕ

Применение Фитолавина, ВРК

ФИТОПЛАЗМИН®, ВРК

д.в. МАКРОЛИДНЫЙ ТИЛОЗИНОВЫЙ КОМПЛЕКС

Комплекс биологически активных веществ, синтезируемых почвообитающим стрептомицетом *Streptomyces fradiae*.

Механизм действия – системный.

Выраженное действие против фитоплазмозов

Не совместим с препаратами, содержащими живые бактерии!

Целесообразно чередование с Фитолавином, ВРК

СРОК ГОДНОСТИ 1 год (до 2-х лет)

ПРЕИМУЩЕСТВА

- ✓ ВЫСОКОЭФФЕКТИВЕН ПРОТИВ БАКТЕРИОЗОВ
- ✓ ПОЗВОЛЯЕТ БОРОТЬСЯ С ФИТОПЛАЗМЕННЫМИ ИНФЕКЦИЯМИ
- ✓ НЕ ВЫЗЫВАЕТ РЕЗИСТЕНТНОСТЬ
- ✓ НЕ ФИТОТОКСИЧЕН ДЛЯ РАСТЕНИЙ
- ✓ ИМЕЕТ ДЛИТЕЛЬНЫЙ ПЕРИОД ЗАЩИТНОГО ДЕЙСТВИЯ
- ✓ НЕ ИМЕЕТ СРОКА ОЖИДАНИЯ

Применение Фитоплазмина, ВРК

Действующие вещества препаратов Фитолавин, ВРК, Фитоплазмин, ВРК

комплексы стрептотрициновых и макролидных соединений и их продуценты *Streptomyces spp.* являются естественными

Компонентами природных экосистем Препараты на их основе разрешены к применению в органическом земледелии

СИСТЕМА ДОБРОВОЛЬНОЙ СЕРТИФИКАЦИИ

Стрекар, КС

Действующее вещество: **ФИТОБАКТЕРИОМИЦИН (25 Г/Л) + КАРБЕНДАЗИМ (70 Г/Л)**

Способ применения – опрыскивание, полив растений

Механизм действия – системный

Норма применения: 0,15-0,2% рабочий раствор — защищенный грунт

СРОК ГОДНОСТИ 1 год

Обеспечивает одновременную защита от бактериальных и грибных заболеваний

Фитобактериомицин

Высокоэффективен против различных видов бактериозов Обладает сдерживающим действием на некоторые виды грибов

Карбендазим

Эффективен против широкого спектра грибных заболеваний: фузариозов, церкоспороза, мучнистой росы, вертициллеза, парши и др.

Применение Стрекара, КС

Вирус пятнистого увядания (бронзовости) томата (Tomato Spotted Wilt Virus) на перце. Фото: ИЛ «АгросервисДиагностика»

ВИРУСЫ

- Облигатные паразиты
- о Содержат одну или несколько молекул нуклеиновой кислоты (РНК или ДНК)
- Имеют защитную белковую оболочку (капсид)
- Не способны самостоятельно проникнуть через кутикулу и клеточную стенку растительной клетки – пассивный транспорт через повреждения, поранения, с помощью переносчиков
- о Культурные растения поражают более 450 видов вирусов
- Количество описанных видов вирусов, поражающих томат, составляет 136, тогда как для других овощных культур это число заметно ниже. Только для огурца описано еще больше вирусных патогенов – 153.

ПАТОЛОГИЧЕСКОЕ ВОЗДЕЙСТВИЕ ВИРУСОВ НА РАСТЕНИЯ

Вирус чёрной кольчатости томата (Tomato Black Ring Virus) Фото: ИЛ «АгросервисДиагностика»

- Нарушение водного режима: снижается интенсивность транспирации из-за образования тиллов и отмирания клеток ксилемы и флоэмы. Изменение транспирационной поверхности листьев вследствие развития некрозов (нарушается работа устьиц), а также отмирания части листового аппарата.
- Подавление/снижение процесса фотосинтеза: под воздействием вирусной инфекции отмечается разрушение хлоропластов, их изменение или агрегация в вирусные включения. Это приводит к разрушению хлорофилла или его неучастию в синтезе.
- Нарушение углеводного обмена: при поражении флоэмы нарушается отток крахмала, который перегружает паренхимные клетки. В результате листья утолщаются, становятся кожистыми и хрупкими.
- Нарушение азотного обмена: приводит к разрушению белков хозяина и подавлению их нормального синтеза. С началом репродукции вируса падает содержание небелкового азота

Основные вирусы, поражающие томат

Международное название	Русское название
Alfalfa mosaic virus (AMV)	Вирус мозаики люцерны
Arabis mosaic virus (ArMV)	Вирус мозаики резухи (арабиса)
Cucumber mosaic virus (CMV)	Вирус обыкновенной мозаики огурца
Impatiens necrotic spot virus (INSV)	Вирус некротической пятнистости бальзамина
Pepino mosaic virus (PepMV)	Вирус мозаики пепино
Potato virus X (PVX)	Х-вирус картофеля
Potato virus Y (PVY)	Ү-вирус картофеля
Tobacco etch virus (TEV)	Вирус гравировки табака
Tobacco mosaic virus (TMV)	Вирус мозаики табака
Tobacco ringspot virus (TRSV)	Вирус кольцевой пятнистости табака
Tomato aspermy virus (TAV)	Вирус аспермии томата
Tomato black ring virus (TBRV)	Вирус чёрной кольчатости томата
Tomato brown rugose fruit virus (ToBRFV)	Вирус коричневой морщинистости плодов
Tomato bushy stunt virus (TBSV)	Вирус кустистой карликовости томата
Tomato mosaic virus (ToMV)	Вирус мозаики томата
Tomato ringspot virus (ToRSV)	Вирус кольцевой пятнистости томата
Tomato spotted wilt virus (TSWV)	Вирус пятнистого увядания (бронзовости) томата
Tomato yellow leaf curl virus (TYLCV)	Вирус жёлтой курчавости листьев томата

Основные вирусы, поражающие огурец

Международное название	Русское название
Alfalfa mosaic virus (AMV)	Вирус мозаики люцерны
Arabis mosaic virus (ArMV)	Вирус мозаики резухи (арабиса)
Cucumber mosaic virus (CMV)	Вирус обыкновенной мозаики огурца
Cucumber green mottle mosaic virus (CGMMV)	Вирус зелёной крапчатой мозаики огурца
Cucumber aphid-borne yellows virus (CABYV)	Вирус желтухи огурца, переносимый тлями
Impatiens necrotic spot virus (INSV)	Вирус некротической пятнистости бальзамина
Tobacco mosaic virus (TMV)	Вирус мозаики табака
Tobacco ringspot virus (TRSV)	Вирус кольцевой пятнистости табака
Tomato black ring virus (TBRV)	Вирус чёрной кольчатости томата
Tomato mosaic virus (ToMV)	Вирус мозаики томата
Tomato ringspot virus (ToRSV)	Вирус кольцевой пятнистости томата
Squash mosaic virus (SqMV)	Вирус мозаики тыквы (сквош)
Watermelon mosaic virus (WMV)	Вирус мозаики арбуза
Zucchini yellow mosaic virus (ZYMV)	Вирус жёлтой мозаики цукини

Карантинные вирусы, отсутствующие на территории Евразийского экономического союза

Потексвирус мозаики пепино – PepMV

Неповирус кольцевой пятнистости малины – RpRSV

Тобамовирус коричневой морщинистости плодов томата - ToBRFV

Бегомовирус желтой курчавости листьев томата - TYLCV

Карантинные вирусы, ограниченно распространенные на территории Евразийского экономического союза

Тосповирус некротической пятнистости бальзамина - INSV

Неповирус кольцевой пятнистости табака – TRSV

Неповирус кольцевой пятнистости томата - ToRSV

Тосповирус пятнистого увядания томата - TSWV

Неповирусы кольцевой пятнистости

Неповирусы кольцевой пятнистости малины – *RpRSV*

Растения –хозяева:

- тыква
- артишок
- земляника садовая
- плодовые косточковые
- ягодные кустарниковые
- декоративные кустарниковые в т.ч. роза
- декоративные травянистые
- сорные растения

Передаётся:

- семена культурных и сорных растений
- грунт, с вироформными нематодами Longidorus elongatus, Longidorus macrosoma и Paralongidorus maximus
- рассада, подвои, корневища, луковицы

Симптомы:

На листьях растений земляники развиваются хлоротичные пятна, кольца и линейные узоры, курчавость развивается прогрессирующая карликовость растений.

На зараженных растениях розы развивается хлоротическое пожелтение жилок и прогрессирующая карликовость.

Сохраняется:

- в семенах
- в нематодах

Вирус мозаики пепино (PepMV) (род Potexvirus)

Значимое экономическое влияние оказывает на томаты, выращиваемые интенсивными методами.

Симптомы

Плоды томатов приобретают неравномерную окраску, мраморность, часто растрескиваются и вздуваются. На листьях проявляется остроконечность верхушек, хлороз, жёлтая пятнистость, мозаичность и пузырчатость. Покоричневение чашечки

Вирус мозаики пепино (PepMV) (род Potexvirus)

Бессимптомное заражение

Разнообразие симптомов

Вирус мозаики пепино (PepMV) (род Potexvirus)

Передается

- с семенами
- рассадой
- насекомыми-переносчиками и опылителями
- инструментом, руками
- поливной водой
- с тарой

Высоко контагиозный патоген

Растения-хозяева:

- томат
- пепино
- баклажан
- картофель
- базилик
- перец
- хризантема
- сорные растения сем. паслёновые, вьюнки, календула, мальвы, осоты, подорожники, щирицы

Сохраняется

длительное время

- в растительных остатках
- поливной воде и питательных растворах
- на конструкциях и инструментах
- в почве и искусственных субстратах

Вирус коричневой морщинистости плодов томата (ToBRFV)

(род Tobamovirus)

Может приводить к потерям урожая до 80%

Симптомы:

- На плодах образуются участки морщинистой ткани, жёлтая или коричневая крапчатость
- Деформация плодов
- На листьях проявляется хлороз, мозаичность, крапчатость, сужение и пузырчатость листовых пластин
- На черешках, цветоножке, чашечке цветка образуются некрозы
- Увядание и гибелью всего растения.

Вирус коричневой морщинистости плодов томата (ToBRFV)

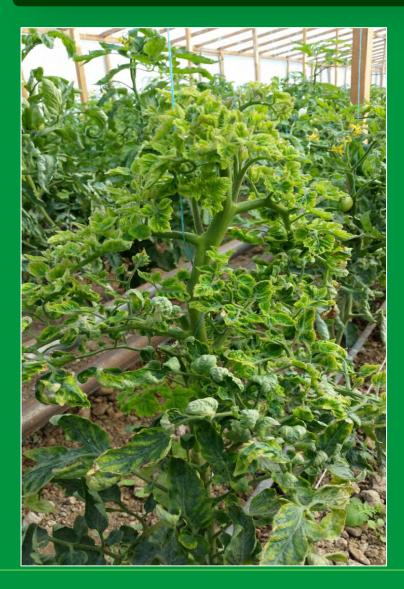
Вирус коричневой морщинистости плодов томата (ToBRFV) (род *Tobamovirus*)

Растения-хозяева:

- Томат
- Перец
- Сорные растения

Передается:

- семенами
- рассадой
- насекомыми-переносчиками
- опылителями
- инструментом, руками
- поливной водой
- тарой


Высоко контагиозный патоген

Сохраняется: длительное время

- в растительных остатках
- поливной воде, питательных растворах
- на конструкциях и инструментах
- в почве и искусственных субстратах
- сорных растениях
- семенах

Вирус жёлтой курчавости листьев томата (TYLCV) (род *Begomovirus*)

Симптомы

проявляются через 2 недели после заражения.

При заражении растений на стадии рассады, вирус вызывает сильное отставание в развитии молодых листьев и побегов, что приводит к некоторой кустистости растения, не образует плодов. У более старых растений заболевание приводит к чрезмерной кустистости, утолщенным и сморщенным листьям, межжилковому хлорозу. Междоузлия укорачиваются. На более поздних стадиях заболевания листья приобретают жесткую текстуру, и их хлоротические края закручиваются кверху и внутрь. Часто опадают цветки.

Вирус жёлтой курчавости листьев томата (TYLCV)

Растения-хозяева:

- томат
- перец
- фасоль
- тыква
- лизиантус

Сохраняется:

- на сорной растительности семейства паслёновых
- в популяции табачной белокрылки

Передается:

- рассадой, заражённой TYLCV
- насекомыми-переносчиками <u>табачной белокрылкой</u> (Bemisia tabaci).

Неповирусы кольцевой пятнистости

Неповирус кольцевой пятнистости томата – *TRSV*

Растения - хозяева:

518 видов растений из 55 семейств

- томаты
- огурцы
- кабачки
- розы
- земляника садовая
- декоративные и пр.
- сорные растения

Симптомы:

Сначала на листьях светлые пятна по типу хлороза, которые чередуются с темнозелеными участками, затем появляются пятна в виде колец. Постепенно в местах поражения появляются некротические пятна, лист сморщивается и отмирает. Бутоны на побегах, где обнаружены пораженные листья, не закладываются.

Передаётся:

- семена культурных и сорных растений
- **грунт, с вироформными нематодами** *Xiphinema americanum* (Cobb)
- трипсы
- механически через руки, инвентарь

Сохраняется:

- в семенах
- в нематодах
- растительных остатках
- конструкциях, инвентаре

Вирус пятнистого увядания (бронзовости) томата (Tomato Spotted Wilt Virus).

Растения-хозяева:

Более 1100 видов из 70 семейств 1-2-дольных

- Томаты - Табак

- Перец - Салат-латук

- Картофель - Хризантема, петунья и др.

- Баклажан - Виноград и др.

- Фасоль - Сорные растения

Передается:

ИЗВЕСТНО ОКОЛО 10 ВИДОВ ТРИПСОВ-ПЕРЕНОСЧИКОВ

в том числе Frankliniella occidentalis, Thrips tabaci

Сохраняется:

- в сорняках
- В Трипсах (заражаются личинки, сохраняется в течение всей жизни трипса, потомству не передаётся)

Frankliniella occidentalis — основной переносчик вируса TSWV

Вирус пятнистого увядания (бронзовости) томата (TSWV). (род *Tospovirus*)

Может приводить к потерям урожая до 50%

- Листья приобретают бронзовый оттенок, становятся жёсткими и поднимаются под углом 45⁰ относительно стебля
- На плодах появляется характерный рисунок из колец
- растения задерживаются в росте

Вирус пятнистого увядания (бронзовости) томата (Tomato Spotted Wilt Virus).

Вирус пятнистого увядания (бронзовости) томата (Tomato Spotted Wilt Virus)

Симптомы могут существенно отличаться в зависимости от вида заражённого растения

- некротические пятна и / или полосы на листьях, стеблях, черешках (до отмирания черешка)
- жёлтая сетчатость, пожелтение жилок, деформация листьев
- увядание и / или опадение листьев

Вирус пятнистого увядания (бронзовости) томата (Tomato Spotted Wilt Virus).

Меры борьбы:

- Удаление растений с симптомами заражения вирусом TSWV
- Борьба с переносчиками трипсами !!!
- Обработка поражённых растений препаратом Фармайод, ГР (0,05-0,08% концентрацией рабочего раствора)

Вирус обыкновенной мозаики огурца CMV

(род Cucumovirus)

Растения-хозяева

Поражает более 1200 видов растений более чем из 100 семейств (самый широкий спектр хозяев из известных вирусов)

- огурец - томат- фасоль - перец- морковь - розы

- свёкла - древесные породы

- картофель - декоративные культуры

- салат - цветочные культуры и пр.

Симптомы:

- типичная мозаика, жёлтые пятна, деформация, папоротникововидность листьев. Задержка роста, низкорослость, снижение урожайности, иногда быстрое и полное увядание растений. Плоды деформируются, образуются пятнистости и точечные углубления, горечь.

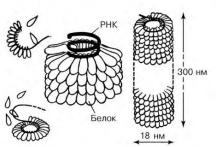
Вирус обыкновенной мозаики огурца CMV

(род Cucumovirus)

Передаётся:

- семенами
- более, чем 80 видами тлей
- механически с соком через руки, инвентарь
- с растительными остатками
- водой, питательными растворами
- -перемещается через плазмодесмы и по флоэме

Сохраняется:


- в семенах
- корнях сорных и многолетних растений
- растительных остатках

В инфицированных вирусом *CMV* растениях происходят изменения летучих органических соединений, которые оказывают существенные влияние на поведение колоний тли. В частности на огурце было отмечено, что тли *Aphis gossypii* предпочитают питаться на заражённых *CMV* растениях, а затем, после приобретения вируса, который своим капсидом связывается с рецепторами в стилете тли, селиться и размножаться на здоровых. Период заражения 5-10 секунд.

Вирус мозаики табака ТМУ

(род Tobamovirus)

Вирус табачной мозаики

Растения-хозяева

несколько сот видов из 9 семейств

- томат сложноцветные
- картофель бобовые
- перец сорные (ветреница, лебеда, паслён и пр.)
- · огурец некоторые древесные (дуб)
- табак
- земляника
- декоративные культуры и пр.

Симптомы:

- ярко-желтая мозаика, морщинистость, деформация листовых пластинок, образование некротических участков от коричнево-серого до темнокоричневого цвета в мякоти плодов. Симптомы проявляются на верхних листьях к концу вегетации.

Вирус мозаики табака TMV

(род Tobamomovirus)

Передаётся:

- с семенами
- рассадой
- насекомыми-переносчиками (тли, саранчовые и пр.)
- контактно-механически инструментом, руками
- поливной водой

Сохраняется:

- в субстратах в растительных остатках на поверхности семян
- на конструкциях в табачных изделиях (выделяется через много лет после их изготовления)

Особенностью патогена является его широкий диапазон выживания. Стабилен до

- 40° С и высоко устойчив к высушиванию. Инактивация наблюдается только при температуре $+90^{\circ}$ С - $+92^{\circ}$ С, а в сухих листьях при - $+150^{\circ}$ С.

Проникает из заражённых клеток в соседние через плазмодесмы. Для более успешного прохождения ВТМ продуцирует белок увеличивающий их. Перемещается по растению по флоэме.

Вирус томатной мозаики ToMV

(род Tobamomovirus)

Ви**рус** томатной мозаики (ToMV)

Растения-хозяева

- томат
- перец
- цветочные культуры (петунья, львиный зев, календула)
- хлопчатник
- древесные породы (ель*,* ива) и пр.

Симптомы:

- мозаика, морщинистость, деформация (нитевидность или скручивание), хлороз и некроз листьев, образование энаций (выростов). На плодах жёлтые или зелёные пятна непрокраса. Плоды деформируются. Задержка роста, низкорослость, снижение урожайности.

Вирусы арабис мозаики + томатной мозаики

Вирус томатной мозаики (ToMV) (род *Tobamovirus*)

Сохраняется:

- в семенах
- растительных остатках (до 10 лет)
- почве (до 10 лет)
- на различных поверхностях (конструкции, инструменты, тара, транспорт и пр.)
- в сорняках
- в поливной воде до 3-4 недель при t 20°C, до 6 месяцев при t 4°C. Обнаружен в ледниках Гренландии, тумане, морской воде и т.д.

Передаётся:

- семенами
- механически через инструменты и руки
- поливной водой
- насекомыми

Один из самых контагиозных вирусов

Прочие вирусы: вирус мягкой крапчатости перца (PMMoV) вирус легкой зелёной мозаики табака (TMGMV). (род *Tobamovirus*)

Высоко контагиозены, легко передаются при уходе. Очень стабилены, длительное время сохраняются на конструкциях, инструментах, в растительных остатках.

Вирус **TMGMV** вызывает жёлтую, светло-зелёную мозаику, межжилковый хлороз или узор «дубовый лист», деформацию листьев, иногда некроз жилок, опадение листьев.

Вирус **PMMoV** опасен тем, что вызывает обычно более слабые симптомы на листьях и не сразу может быть обнаружен, но более сильные на плодах. Встречается в воде и служит индикатором очистки сточных вод.

Вирус мозаики цуккини (ZYMV)

(род *Potyvirus*)

Растения-хозяева:

- огурец
- кабачок
- дыня
- арбуз
- пр. тыквенные

симптомы: начальной на стадии жилок, затем общее тонких посветление тёмно-зелёными пожелтение листа Листья деформируются участками. Плоды, особенно состояния шнурков. цуккини, деформироваться, могут образуются бугристые наросты, продольные трещины. У огурца наблюдается мозаика различной интенсивности с тёмно-зелёными прожилками и изменение окраски плодов. Может вызывать задержку развития карликовость плодов.

Передаётся несколькими видами тлей

Вирус псевдожелтухи свеклы (BPYV) (род *Crinivirus*)

Симптомы

проявляются через 2-4 недели после заражения

- на старых листьях между жилок появляются жёлтые пятна, которые постепенно становятся выпуклыми, сливаются в утолщенные хрупкие обширные зоны, при этом жилки остаются зелёными. Затем поражение переходит на молодые листья. На плодах симптомы не появляются. При раннем заражении растения отстают в росте, продуктивность снижается.
- Легко спутать с недостатком Mg, повреждениями насекомыми, реакцией на температурные отклонения и пр.

Для развития болезни необходима высокая интенсивность освещения. В затенённых местах или в пасмурную погоду симптомы ослабляются.

Вирус псевдожелтухи свеклы (BPYV) (род *Crinivirus*)

Растения-хозяева:

- огурец столовая свёк<u>ла</u>
- кабачок мускусная тыква
- морковь декоративные
- салат-латук
- шпинат

Сохраняется:

- На сорной растительности - В популяции тепличной белокрылки

Передается:

- насекомыми-переносчиками тепличной белокрылкой

(Trialeurodes vaporariorum).

Вирус желтой карликовости тыквенных **(CYSDV)** (род *Crinivirus*)

Комплекс вирусов, включая (CYSDV)

Симптомы:

- сильное пожелтение, которое начинается с межжилковых пятен на старых листьях и переходит в полное пожелтение листовой пластинки, за исключением жилок, с последующим скручиванием, ломкостью и задержкой роста. В целом, симптомы практически неотличимы от симптомов, вызванных вирусом псевдожелтухи свеклы Заболеваемость культур в ЗГ может легко достигать 100%.

Вирус желтой карликовости тыквенных (CYSDV)

Растения-хозяева:

- огурец сорные растения
- кабачок салат-латук
- цуккини
- дыня
- фасоль

Передается:

- насекомыми-переносчиками — <u>табачной белокрылкой</u> (Bemisia tabaci).

Сохраняется:

- на сорной растительности
- в популяции табачной белокрылки (Bemisia tabaci).

Вирус зелёной крапчатой мозаики огурца CGMMV

(род Tobamovirus)

Растения – хозяева:

- огурец томат (реже)
- арбуз перец (реже)
- дыня

Симптомы:

Появляются через 20-30 дней после высадки рассады. Листья на пораженных растениях формируются редуцированные и морщинистые с осветленными жилками, проявляется светло-тёмнозелёная Мозаичные мозаичность. пятна могут некротизироваться. Уменьшается количество женских цветков и количество плодов. Плоды развиваются замедленно, могут приобретать мозаичную окраску и деформироваться. Ухудшается качество плодов. Иногда наблюдаться растений, увядание может ЧТО напоминает корневую гниль огурца.

Вирус зелёной крапчатой мозаики огурца CGMMV

(род Tobamovirus)

Передаётся:

- семена
- механически с соком через руки, инвентарь
- растительные остатки
- вода, питательный раствор

Сохраняется:

- -В семенах
- -Растительных остатках
- -Конструкциях, инвентаре

Высокоустойчив к воздействию экстремальных факторов:

сохраняет жизнеспособность при нагревании до +90°С, выдерживает замораживание, высушивание, в том числе в растительных остатках.

Вирус зелёной крапчатой мозаики огурца CGMMV

(род *Tobamovirus*)

Схожие симптомы могут быть вызваны разными факторами

Проявление дефицита калия

Смешанная вирусная инфекция: TMV + ToMV

Такие же симптомы дают и вирусы мозаики пепино (PepMV) и др.

Смешанная вирусная инфекция на томате (комплекс вирусов)

Чёрная кольчатость томата + огуречная мозаика + томатная мозаика (TRSV + CMV+ ToMV)

Чёрная кольчатость томата + томатная мозаика (TRSV + ToMV)

Мозаика томата + табачная мозаика (ToMV + TMV)

Смешанная вирусная инфекция на баклажане

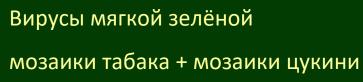
(комплекс вирусов)

TMV – вирус мозаики табака

ToMV – вирус мозаики томата

CMV – вирус мозаики огурца

PVX – X-вирус крапчатой мозаики картофеля


EMDV – вирус карликовой мозаики баклажана

Смешанная вирусная инфекция на огурце (комплекс вирусов)

Вирусы зелёной крапчатой мозаики огурца + обыкновенной мозаики огурца

Вирусы лёгкой зелёной мозаики табака + мозаики цукини + зелёной крапчатой мозаики огурца + обыкновенной мозаики огурца

Смешанная вирусная инфекция на огурце (комплекс вирусов)

CMV — вирус обыкновенной мозаики огурца

ToCV – вирус хлороза томата

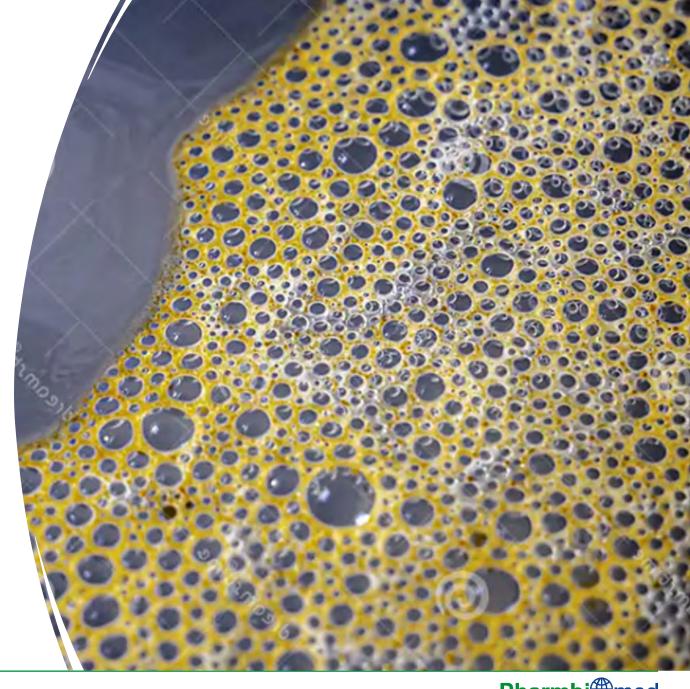
TSWV – вирус пятнистого увядания (бронзовости) томата

TBRV – вирус чёрной кольчатости томата

CYSDV – вирус желтой карликовости тыквенных

ИННОВАЦИОННЫЙ ПРОТИВОВИРУСНЫЙ ПРЕПАРАТ

ФАРМАЙОД®, ГР



Отличие Фармайода 10% от Фармайода, ГР

- Пенится, обеспечивая длительное время воздействия
- Лучшее проникает в трещины и отверстия
- Эффект прилипания на поверхностях
- Замедленное испарение препарата с поверхности
- Визуальный контроль нанесения препарата

ФАРМАЙОД, ГР

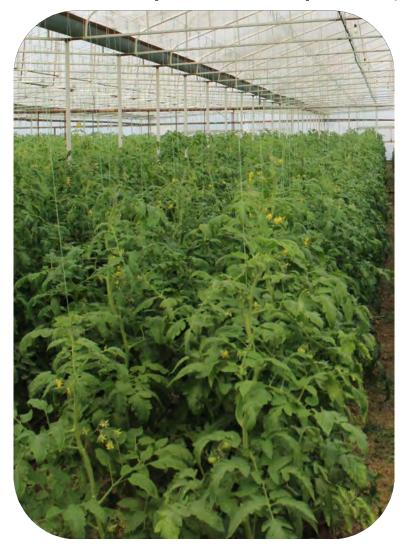
ЭФФЕКТИВЕН ПРОТИВ ВИРУСНЫХ, БАКТЕРИАЛЬНЫХ БОЛЕЗНЕЙ

ПРЕПАРАТ ОБЛАДАЕТ КОНТАКТНЫМ И СИСТЕМНЫМ ДЕЙСТВИЯМИ.

ЛЕГКО ПРОНИКАЕТ ЧЕРЕЗ УСТЬИЦА РАСТЕНИЙ.

ПОЭТОМУ ПРОФИЛАКТИЧЕСКИЕ И ЛЕЧЕБНЫЕ ОБРАБОТКИ БОЛЕЕ ЭФФЕКТИВНЫ, ЕСЛИ ИХ ПРОВОДИТЬ

В ПЕРВОЙ ПОЛОВИНЕ ДНЯ


МОЖЕТ ИСПОЛЬЗОВАТЬСЯ КАК ДЛЯ ПРОФИЛАКТИЧЕСКИХ, ТАК И ДЛЯ ЛЕЧЕБНЫХ ЦЕЛЕЙ

Опыт применения Фармайода, ГР против вируса жёлтой курчавости листьев томата (Tomato Yellow Leaf Curl Virus), Дагестан 2021 г.

Схема защиты с применением Фармайода, ГР

Схема защиты без применения Фармайода, ГР

Рекомендации по применению препарата Фармайод, ГР

для защиты томата от вирусных болезней

Норма применения препарата, (л/ га)	Культура	Вредный объект	Способ, время обработки, особенности применения. Расход рабочей жидкости	Сроки ожидания
0,4-0,5	Томаты защищенного грунта	Вирусные болезни	Опрыскивание 0,04-0,05%-й концентрацией рабочего раствора через 7-10 суток после высадки рассады на постоянное место. Расход рабочей жидкости – 1000 л/га	3
0,5-0,8			Последующие 0,05-0,08%-й концентрацией рабочего раствора — с интервалом 7-10 суток и по мере появления симптомов. Расход рабочей жидкости — 1000 л/га	3
0,9-2,4			Полив под корень 0,03-0,05%-й концентрацией рабочего раствора через 7-10 суток после высадки рассады на постоянное место. Расход рабочей жидкости — 3000- 4000 л/га	3
1,5-3,2			Последующие 0,05-0,08-0,1*%-й концентрацией рабочего раствора с интервалом 7-10 суток и по мере появления симптомов. Расход рабочей жидкости — 3000- 4000 л/га 0,1*% - использовать на светокультуре в исключительных случаях, при высокой освещенности и влажности	3

Рекомендации по применению препарата Фармайод, ГР для защиты огурца от вирусных болезней

Норма применения препарата, (л/ га)	Культура	Вредный объект	Способ, время обработки, особенности применения. Расход рабочей жидкости	Сроки ожидания
0,3	Огурец защищенного грунта	Вирусные болезни	Опрыскивание 0,03%-й концентрацией рабочего раствора через 7-10 суток после высадки рассады на постоянное место. Расход рабочей жидкости — 1000 л/га	3
0,3-0,5			Последующие 0,03-0,05%-й концентрацией рабочего раствора с интервалом 7-10 суток и по мере появления симптомов. Расход рабочей жидкости — 1000 л/га	3
2,0			Полив под корень 0,03-0,05%-й концентрацией рабочего раствора через 7-10 суток после высадки рассады на постоянное место. Расход рабочей жидкости — до 4000 л/га	3
2,0-2,8			Последующие 0,05-0,07%-й концентрацией рабочего раствора с интервалом 7-10 суток и по мере появления симптомов. Расход рабочей жидкости — до 4000 л/га	3
1,5			Полив (капельный) под корень 0,05%-й концентрацией рабочего раствора через 7-10 суток после высадки рассады на постоянное место. Расход рабочей жидкости — до 3000 л/га	3
1,5-2,1			Последующие 0,05-0,07%-й концентрацией рабочего раствора с интервалом 7-10 дней и по мере появления симптомов. Расход рабочей жидкости — до 3000 л/га	3

После применения ФИТОЛАВИНА, ФИТОПЛАЗМИНА, ФАРМАЙОДА

НЕОБХОДИМО дополнительное

ВНЕСЕНИЕ препаратов, содержащих живые культуры

ПОЛЕЗНЫХ БАКТЕРИЙ!

Интервал – через 3-5 дней после обработки

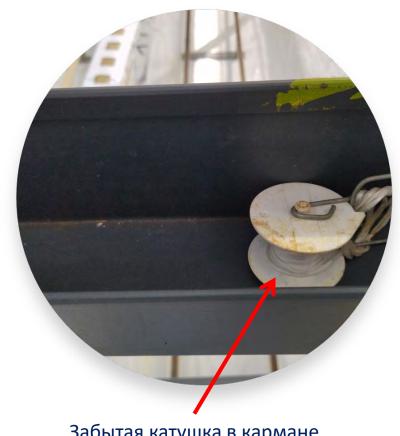
Мониторинг и контроль

КАРАНТИННЫЕ МЕРОПРИЯТИЯ: ОБЩИЙ ПЛАН

- 1. На обнаруженном участке устанавливается табличка «КАРАНТИН»
- 2. Проведение инструктажа для работников
- 3. Все уходные и сборные работы проводятся в последнюю очередь
- 4. На данном участке используются отдельные: сменная/одноразовая одежда и обувь, инвентарь, секаторы
- 5. Ежедневная смена дезинфицирующего раствора для обработки рук и инвентаря
- 6. Растительные остатки складываются в отдельный бак с последующей его дезинфекцией
- 7. Вводится запрет на работу сотрудникам из карантинного участка в других звеньях или блоках

КАРАНТИННЫЕ МЕРОПРИЯТИЯ: ОБЩИЙ ПЛАН


- 8. Удаление органических образований и микроорганизмов с внутренних поверхностей теплиц (стекла, конструкции) и стационарного оборудования, влажная очистка с использованием моющих средств с последующей промывкой
- 9. Дез маты, расположенные при входе в карантинный блок, необходимо регулярно промывать
- 10. Не допускается использование возвратной тары без обработки
- 11. Максимальный контроль численности вредителейпереносчиков
- 12. Пораженные сухие растения и маты, на которых они выращивались, упаковывать в пластиковые пакеты и утилизировать



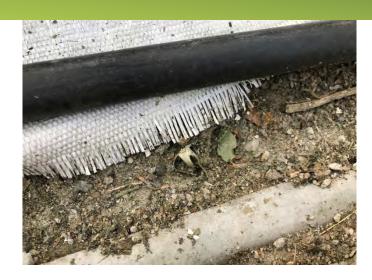
Потенциальный путь заноса патогенов	Возможные решения
Посевной и посадочный материал	Использование только протравленного семенного материала; проверенные поставщики; лабораторный контроль.
Растительные остатки и сорные растения	Своевременная уборка с последующей дезинфекцией тары (обеззараживание р/о при наличии особо опасных патогенов); уход за прилегающими территориями (гербициды, инсектициды, скашивание)
Насекомые, нематоды	Использование сеток (~40 меш) на фрамугах; использование ловушек; запрет на цветочные букеты и горшечные растения, овощи и фрукты в рабочей зоне; сменная одежда для работников
Рассадные смеси, органический субстрат, повторно используемый субстрат и маты	Проверенные поставщики; обеззараживание повторно используемого субстрата; внесение микроорганизмов-антагонистов фитопатогенных бактерий и грибов
Поливная вода	Отказ от использования воды из открытых водоемов (при возможности); использование OCMOCA; качественная дезинфекция повторного дренажа (при использовании, лучше отказаться); своевременная замена и очистка фильтров
Инвентарь, тара, конструкции теплиц	Регулярная мойка и дезинфекция
Сотрудники	Дисциплина (!) и регулярный инструктаж по санитарно-карантинным мероприятиям; сменные одежда и обувь в рабочей зоне; установка санпропускников; дезматы на входе в теплицу; дезрастворы для обработки рук и инструмента; отказ от использования мобильных телефонов, украшений

Первый и важнейший этап профилактических работ – дезинфекция теплиц

Забытая катушка в кармане подъёмника

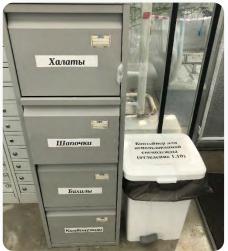
Первый и важнейший этап профилактических работ – дезинфекция теплиц

Растительные остатки!


источники инфекции в тепличном комплексе

источники инфекции в тепличном комплексе:

МЕРЫ СНИЖЕНИЯ РИСКА



Стоит обратить внимание!

ДЕЗИНФЕКЦИЯ ТЕПЛИЦ - ПЕРВЫЙ И ВАЖНЕЙШИЙ ЭТАП ПРОФИЛАКТИЧЕСКИХ РАБОТ ЗАЛОГ ВЫСОКОГО УРОЖАЯ

Систематическое проведение фитосанитарных обследований; мониторинг вредителей

- 1. Предликвидная обработка инсектонематоакарицидом широкого спектра действия
 - Фитоверм, KЭ (50 г/л) 0,04% раб. p-p
 - фунгициды, бактерициды, вирулициды
 - Фитолавин, BPK 0,2-0,3% раб. p-p; Фармайод, ГР 0,5 1% раб. p-p
 - опрыскивание (Эмпас и подобные)
- 2. Последний сбор
- 3. Ликвидная обработка в тот же день инсектициды горячий туман экспозиция 24 часа, t° 40-45 $^\circ$ C
- 4. Вынос растений и быстрый вывоз их за пределы теплицы не менее чем за 5 км; в случае обнаружения карантинных объектов заделка в грунт
- 5. Подметание растительных остатков подметание / использование промышленных пылесосов
- 6. Срезка старых цветоловушек
- 7. Снятие катушек

Илья Ильф

ДЕЗИНФЕКЦИЯ ТЕПЛИЦ - ПЕРВЫЙ И ВАЖНЕЙШИЙ ЭТАП ПРОФИЛАКТИЧЕСКИХ РАБОТ - ЗАЛОГ ВЫСОКОГО УРОЖАЯ

8. Дезинфекция конструкций теплиц, лотков, подстилающего материала и пр.

-- ГОРНОСТАЙ --

глутаровый альдегид + DDAC

-- горячий туман 20-25% раб. р-р, экспозиция 24 часа, t 40-45°С (на 1000 м³ 1 л или 4-5 л раб. р-ра, расход раб. жидкости 120-150 л/га -- опрыскивание 0,5-1% раб. р-ром, расход раб. жидкости 3000-5000 л/га

горячий туман

НА МОМЕНТ ГАЗАЦИИ

Вентиляторы — выключены Шторы — «закрыты» Фрамуги — закрыты

ЭКСПОЗИЦИЯ 16-24 ч

Вентиляторы – включены Шторы – «открыты» Фрамуги – закрыты Отопление – нижний контур

ПРОВЕТРИВАНИЕ


Фрамуги – прикрыты до достижения температуры 40°С, после открыты 100%

Вентиляторы – включены

Время проветривания – 24-48 ч

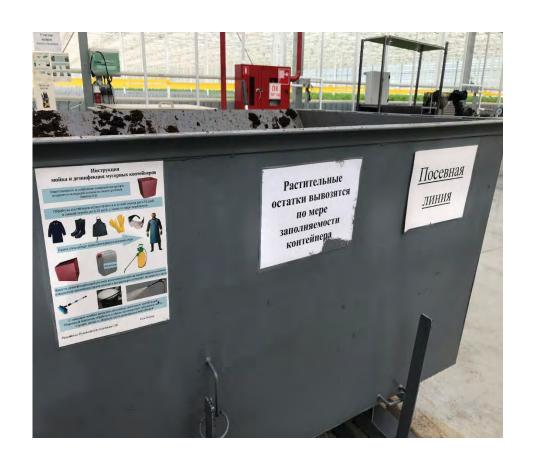
ДЕЗИНФЕКЦИЯ ТЕПЛИЦ - ПЕРВЫЙ И ВАЖНЕЙШИЙ ЭТАП ПРОФИЛАКТИЧЕСКИХ РАБОТ - ЗАЛОГ ВЫСОКОГО УРОЖАЯ

- 9. Пролив лейкой стыков пленки (агроволокна) по периметру теплиц кислотами и щелочными препаратами (КОН)
- 10. Промывка системы капельного полива азотной кислотой 1,5-2% экспозиция 12 час.
- с последующей промывкой водой или надуксусной кислотой 1% экспозиция 4 часа.

Замачивание акваштекеров в азотной кислоте 3% с последующей очисткой каждого щеткой.

Трубки протирают Фармайодом 1,5-2%.

- 11. Дезинфекция системы капельного полива Гипохлоридом 2-3% или перекисью водорода 3% экспозиция 12- 24 часа.
- 12. Очистка стекол, конструкций, лотков, полотна и пр. дез. средствами с моющим эффектом **Фармадез** 0,5-1% раб. p-p



ДЕЗИНФЕКЦИЯ ТЕПЛИЦ - ПЕРВЫЙ И ВАЖНЕЙШИЙ ЭТАП ПРОФИЛАКТИЧЕСКИХ РАБОТ - ЗАЛОГ ВЫСОКОГО УРОЖАЯ

- 13. Дезинфекция рукавов для CO₂ Гипохлоритом Na 3%
- 14. Обжиг шпалеры и тросов газовой горелкой
- 15. Протирание ламп и светильником техническим спиртом или пропиловым или изопропиловым 50-70%.
- 16. Мойка накопительных баков и емкостей для дренажных вод $H_2O_2 1-2\%$
- 17. Мойка песчано-гравийных фильтров H_2O_2 37%
- 18. Чистовая обработка Гипохлоридом Na конструкций, оборудования и пр.
 - -- *холодный туман* 15-20 л/га, расход раб. p-ра 120-180 л/га
- 19. Чистовая обработка Фармайодом
 - -- *холодный туман* 15-20 л/га, расход раб. p-ра 120-180 л/га или
 - -- опрыскивание 1-3 % раб. р-ром, расход раб. жидкости 3000-5000 л/га
- 20. Раскладка и полив дезраствором дезковриков Горностаем 15%
- 21. Развешивание цветоловушек
- 22. Раскладка и напитывание матов, установка капельниц
- 23. Нанесение триходермы на конструкции, маты, полотно

Фармайод 10%

Действующее вещество: Водорастворимый комплекс йода 10%

Назначение:

Дезинфекция теплиц, оборудования и пр.

Дезинфекция субстрата

Дезинфекция теплиц

Экспозиция 10 минут

- Тип обработки Влажное опрыскивание
- Температура 20-25 C°
- Концентрация От 1 – 3% рабочий раствор
- Эффективность До 98%

- Экспозиция До 12 часов
- Необходимость смывания Не требуется

Срок высадки растений Не менее 3-х дней

Почему пена?

- о Более длительное время воздействия
- о Лучшее прилипание на поверхностях
- о Проникает в трещины и отверстия
- о Визуальный контроль
- о Отсутствует испарение

СХЕМА ОБРАБОТКИ РАСХОДНЫХ МАТЕРИАЛОВ

Кистедержатели, акваштекеры, капельницы, клипсы и др.

- 1. Замачивание водой
- 2. Внесение Гипохлорита натрия 5 л на 100 л*
- 3. Внесение Перекиси водорода 37%, 5 л на 100 л*

^{*}Внесение гипохлорита и перекиси проводится с небольшим интервалом (2-3 мин). Экспозиция 24 часа.

ДЕЗИНФЕКЦИЯ СУБСТРАТА

Тип обработкиПолив субстрата

Температура20-25 С°

- Концентрация
- 1 − 3 % рабочий раствор
- ЭффективностьДо 98%

- ЭкспозицияДо 12 часов
- Необходимость смывания Не требуется
- Срок высадки растений
 Не менее 3-5 дней

Обработка матов 3% -м раствором Фармайода

Йод способен разрушать плазмодесмы, по которым фитоплазмы переходят из одной клетки в другую

ОБРАТИТЬ ВНИМАНИЕ: «ГОРЯЧИЙ» ТУМАН

на момент газации

Температура в теплице — 16-18⁰ С Вентиляторы — выключены Шторы — «закрыты» Фрамуги — закрыты

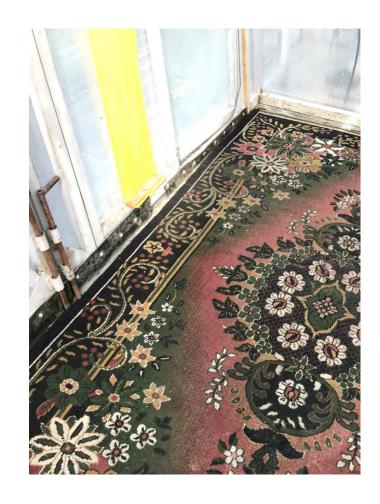
ЭКСПОЗИЦИЯ

Температура в теплице - 20-24⁰ С Вентиляторы — включены Шторы — «открыты» Фрамуги — закрыты Отопление — нижний контур Экспозиция — 16-24 ч

ПРОВЕТРИВАНИЕ

Фрамуги — прикрыты до достижения температуры 400 С, после открыты 100% Вентиляторы — включены Время проветривания — 24-48 ч

ДЕЗИНФЕКЦИЯ МЕТОДОМ ХОЛОДНОГО ТУМАНА


- Тип обработки Холодный туман
- Концентрация 2% рабочий раствор
- Экспозициято 12 до 24 часов
- Необходимость смывания Не требуется

- Срок высадки растений Не менее 3-х дней
- ЭффективностьДо 98%
- Расход рабочего раствора До 150 л/га

ОБРАТИТЬ ВНИМАНИЕ: РАЗМЕР ДЕЗМАТОВ

Оптимум температур для пестицидов

Инсектициды:

Для инсектицидов оптимальной будет температура, при которой наиболее активны насекомые. Так, в холодную погоду, например, бабочки не летают, жуки и блошки впадают в спячку, гусеницы плохо питаются. Применять в это время инсектицид будет нерационально.

 Пиретроиды и ФОСы эффективнее применять при температуре от 8 до 25°С− если выше – эффективность падает.

В литературных источниках же пишут, что пиретроиды стабильны и долго сохраняются на обработанных поверхностях (20-30 дней), поскольку достаточно устойчивы к действию высоких температур и ультрафиолетовых лучей.

© Если температуры уже за 20°С, то более эффективно будет применять неоникотиноиды или препараты на основе действующего вещества Авверсектин С, которые, в свою очередь, не так эффективны при пониженных температурах.

Оптимум температур для пестицидов

Фунгициды:

Фунгициды применять можно при температуре вегетации растений, чтобы препарат хорошо всасывался растениями — от 14 до 28 °C. Наибольшую эффективность от фунгицидов следует ожидать при 15-20°C и погоде, способствующей медленному высыханию рабочего раствора на листьях.

Хотя ряд контактных фунгицидов работают уже от плюс 5°С, например манкоцеб, медные препараты.

ОГУРЕЦ Профилактика

Фаза развития	Препарат	Концентрация / норма внесения
1 настоящий лист	Фитолавин, ВРК	0,20%
2 настоящих листа	Pseudomonas fluorescens (Планриз) + Trichoderma (Трихоцин)	
5-7 дней после посадки	Превикур Энерджи	0,15%
Через 5 дней	Trichoderma (Трихоцин)+ Bacillus subtilis (Алирин или Гамаир)	
Через 3-4 дня	Фитолавин, ВРК	0,20%
Через 2 дня	Фармайод 10%	0,05%
Через 2-3 дня	Trichoderma + Bacillus subtilis	
Через 10 дней	Фармайод 10%	0,06%
Через 3 дня	Trichoderma + Bacillus subtilis	
Через 15 дней	Фитоплазмин, ВРК	0,20%
Через 3-4 дня	Фармайод 10%	0,06%
Через 2-3 дня	Trichoderma + Bacillus subtilis	

Против вирусов: Фармайод 0,03-0,05% + молочная сыворотка 10%, каждые 14 дней

ТОМАТ Профилактика

Фаза развития	Препарат	Концентрация / норма внесения
1 настоящий лист	Фитолавин, ВРК	0,20%
2 настоящих листа	Pseudomonas fluorescens (Планриз) + Trichoderma (Трихоцин)	
Через 15 дней	Pseudomonas fluorescens + Trichoderma	
5-7 дней после посадки	Превикур Энерджи	0,15%
Через 5 дней	Trichoderma (Трихоцин)+ Bacillus subtilis (Алирин или Гамаир)	
Через 5 дней	Фитолавин, ВРК	0,20%
Через 3 дня	Фармайод 10%	0,08%
Через 3 дня	Trichoderma + Bacillus subtilis	
Через 15 дней	Фармайод 10%	0,08%
Через 3 дня	Trichoderma + Bacillus subtilis	
Через 10 дней	Фармайод 10%	0,08%
Через 3 дня	Trichoderma + Bacillus subtilis	
Через 7 дней	Фитоплазмин, ВРК	0,20%

Против вирусов: Фармайод 0,06-0,08% + молочная сыворотка 10%, каждые 14 дней

ОГУРЕЦ ЛЕЧЕНИЕ

Фаза развития	Препарат	Концентрация / норма внесения		
1 настоящий лист	Фитолавин, ВРК	0,20%		
2 настоящих листа	Pseudomonas fluorescens (Планриз) + Trichoderma (Трихоцин)			
5-7 дней после посадки	Превикур Энерджи Trichoderma (Трихоцин)+	0,15%		
Через 5 дней	Bacillus subtilis (Алирин или Гамаир)			
Через 3-4 дня	Фитолавин, ВРК	0,20%		
Через 2 дня	Фармайод 10%	0,05%		
Через 2-3 дня	Pseudomonas fluorescens + Bacillus subtilis			
Через 10-12 дней	Стрекар, КС	0,20%		
Через 3-4 дня	Фармайод 10%	0,06%		
Через 3 дня	Trichoderma + Bacillus subtilis			
Через 2-3 дня	Pseudomonas fluorescens			
Через 10 дней	Фитоплазмин, ВРК	0,20%		
Через 3-4 дня	Фармайод 10%	0,06%		
Против вирусов: Фдрумайод 0,03-10,05% рындоления сываротка 10%, каждые 14 дней				

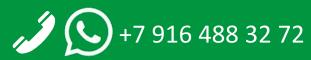
ТОМАТ ЛЕЧЕНИЕ

Фаза развития	Препарат	Концентрация / норма внесения
1 настоящий лист	Фитолавин, ВРК	0,20%
2 настоящих листа	Pseudomonas fluorescens (Планриз) + Trichoderma (Трихоцин)	
Через 15 дней	Фитолавин, ВРК	0,20%
Через 2-3 дня	Pseudomonas fluorescens + Trichoderma	
5-7 дней после посадки	Превикур Энерджи	0,15%
Через 5 дней	Trichoderma (Трихоцин)+ Bacillus subtilis (Алирин или Гамаир)	
Через 5 дней	Фитолавин, ВРК	0,20%
Через 3 дня Через 3 дня	Фармайод 10% Trichoderma + Bacillus subtilis	0,08%
Через 20 дней	Стрекар, КС	0,20%
Через 3-4 дня	Фармайод 10%	0,08%
Через 3 дня	Trichoderma + Bacillus subtilis	
Через 3 дня	Pseudomonas fluorescens	
Через 7 дней	Фармайод 10%	0,08%
Через 3 дня	Trichoderma + Bacillus subtilis	
Цороз-7 пиой	C O OC OCHOTORIDANAMI PDV	100/020% 1/

Против вируео в до трем против в до трем против вируео в до трем против вируео в до трем против в д

СХЕМА КОМПЛЕКСНОЙ ДЕЗИНФЕКЦИИ ТЕПЛИЦ

- 1. Ликвидная обработка растений дезинфектантом **Фармайод** 0,1-0,5%*, затем баковой смесью фунгицидов бактерицидов и инсектоакарицидов.
- 2. Обеззараживание и очищение системы капельного полива с помощью 2-3%* раствора препарата **СИД 2000** (3-4,5 м3 на 1 га) с 4-х часовой экспозицией с последующей промывкой чистой водой до полного ухода раствора. Либо (если исп. маты), внести азотную кислоту 1% раствор, через 1 день внести рабочий раствор фармайода 1-3%, затем промыть водой.
- 3. Удаление растений, растительных остатков, старого субстрата с тщательной зачисткой
- 4. Мытье стекол и конструкций 0,5-1%* раствором препаратов «Фармадез» или «Бионет» (или любым другим моющим средством).
- 5. Обработка теплицы 1% раствором дезинфектанта «**Горностай**» или аналогичным на основе глутарового альдегида, или газация 25%* раствором (в грунтовых теплицах вспашка и пропарка субстрата)
- 6. Мытье стекол и конструкций 0,5-1%* раствором препаратов «Фармадез» или «Бионет»
- 7. Проведение заключительной обработки теплицы 1-3%* раствором препаратов «**Кикстарт**» или «**Экоцид**» с помощью штанг с расходом рабочего раствора 0,3 л на 1м2
- 8. Против вирусной инфекции опрыскивание 1-3%* раствором дезинфектанта «**Фармайод**», а также пролив повторно используемых матов
- 9. Через 3-5 дней после обработки проводится нанесение на стекла и конструкции споровой суспензии гриба-антагониста триходермы
- 10. Первичная пропитка дезматов 15%* раствором препарата «Горностай» (Экоцид С, Фармайод 10%)



БЛАГОДАРЮ ЗА ВНИМАНИЕ!

Батыгин Александр Сергеевич Агроном-консультант

bas@pharmbiomed.ru

